# Adjustment done on dataset
# 1.Change passenger_id become character instead of numerical
# 2.translate survived status in more readable manner where:
# S = survive
# D = death
<- data1 %>%
data1 clean_names() %>%
mutate (passenger_id = as.character(passenger_id),
survived = case_when(
== 1 ~ "S",
survived == 0 ~ "D",
survived TRUE ~ as.character(survived)))
2 gender_submission.csv
2.0.0.1 Before use the data for my analysis, preemptive checking has been done and result as per below:
Summary of checking
Summary for Dataset
#To double confirm status of changes
%>% skim() data1
Name | Piped data |
Number of rows | 418 |
Number of columns | 2 |
_______________________ | |
Column type frequency: | |
character | 2 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
passenger_id | 0 | 1 | 3 | 4 | 0 | 418 | 0 |
survived | 0 | 1 | 1 | 1 | 0 | 2 | 0 |
Summary for survived
<- function(x){
survived_in_detail <- sum(x[,"survived"]=="D") %>%
death paste0(.," passengers died in the incident")
<- sum(x[,"survived"]=="S") %>%
survive paste0(.," passengers survived the incident")
<- c(death, survive)
results return(results)
}survived_in_detail(data1) %>% result_display(.,"")
Output : |
---|
266 passengers died in the incident |
152 passengers survived the incident |
Full dataset
%>% kbl(caption="Full test.csv dataset") %>% kable_styling() data1
passenger_id | survived |
---|---|
892 | D |
893 | S |
894 | D |
895 | D |
896 | S |
897 | D |
898 | S |
899 | D |
900 | S |
901 | D |
902 | D |
903 | D |
904 | S |
905 | D |
906 | S |
907 | S |
908 | D |
909 | D |
910 | S |
911 | S |
912 | D |
913 | D |
914 | S |
915 | D |
916 | S |
917 | D |
918 | S |
919 | D |
920 | D |
921 | D |
922 | D |
923 | D |
924 | S |
925 | S |
926 | D |
927 | D |
928 | S |
929 | S |
930 | D |
931 | D |
932 | D |
933 | D |
934 | D |
935 | S |
936 | S |
937 | D |
938 | D |
939 | D |
940 | S |
941 | S |
942 | D |
943 | D |
944 | S |
945 | S |
946 | D |
947 | D |
948 | D |
949 | D |
950 | D |
951 | S |
952 | D |
953 | D |
954 | D |
955 | S |
956 | D |
957 | S |
958 | S |
959 | D |
960 | D |
961 | S |
962 | S |
963 | D |
964 | S |
965 | D |
966 | S |
967 | D |
968 | D |
969 | S |
970 | D |
971 | S |
972 | D |
973 | D |
974 | D |
975 | D |
976 | D |
977 | D |
978 | S |
979 | S |
980 | S |
981 | D |
982 | S |
983 | D |
984 | S |
985 | D |
986 | D |
987 | D |
988 | S |
989 | D |
990 | S |
991 | D |
992 | S |
993 | D |
994 | D |
995 | D |
996 | S |
997 | D |
998 | D |
999 | D |
1000 | D |
1001 | D |
1002 | D |
1003 | S |
1004 | S |
1005 | S |
1006 | S |
1007 | D |
1008 | D |
1009 | S |
1010 | D |
1011 | S |
1012 | S |
1013 | D |
1014 | S |
1015 | D |
1016 | D |
1017 | S |
1018 | D |
1019 | S |
1020 | D |
1021 | D |
1022 | D |
1023 | D |
1024 | S |
1025 | D |
1026 | D |
1027 | D |
1028 | D |
1029 | D |
1030 | S |
1031 | D |
1032 | S |
1033 | S |
1034 | D |
1035 | D |
1036 | D |
1037 | D |
1038 | D |
1039 | D |
1040 | D |
1041 | D |
1042 | S |
1043 | D |
1044 | D |
1045 | S |
1046 | D |
1047 | D |
1048 | S |
1049 | S |
1050 | D |
1051 | S |
1052 | S |
1053 | D |
1054 | S |
1055 | D |
1056 | D |
1057 | S |
1058 | D |
1059 | D |
1060 | S |
1061 | S |
1062 | D |
1063 | D |
1064 | D |
1065 | D |
1066 | D |
1067 | S |
1068 | S |
1069 | D |
1070 | S |
1071 | S |
1072 | D |
1073 | D |
1074 | S |
1075 | D |
1076 | S |
1077 | D |
1078 | S |
1079 | D |
1080 | S |
1081 | D |
1082 | D |
1083 | D |
1084 | D |
1085 | D |
1086 | D |
1087 | D |
1088 | D |
1089 | S |
1090 | D |
1091 | S |
1092 | S |
1093 | D |
1094 | D |
1095 | S |
1096 | D |
1097 | D |
1098 | S |
1099 | D |
1100 | S |
1101 | D |
1102 | D |
1103 | D |
1104 | D |
1105 | S |
1106 | S |
1107 | D |
1108 | S |
1109 | D |
1110 | S |
1111 | D |
1112 | S |
1113 | D |
1114 | S |
1115 | D |
1116 | S |
1117 | S |
1118 | D |
1119 | S |
1120 | D |
1121 | D |
1122 | D |
1123 | S |
1124 | D |
1125 | D |
1126 | D |
1127 | D |
1128 | D |
1129 | D |
1130 | S |
1131 | S |
1132 | S |
1133 | S |
1134 | D |
1135 | D |
1136 | D |
1137 | D |
1138 | S |
1139 | D |
1140 | S |
1141 | S |
1142 | S |
1143 | D |
1144 | D |
1145 | D |
1146 | D |
1147 | D |
1148 | D |
1149 | D |
1150 | S |
1151 | D |
1152 | D |
1153 | D |
1154 | S |
1155 | S |
1156 | D |
1157 | D |
1158 | D |
1159 | D |
1160 | S |
1161 | D |
1162 | D |
1163 | D |
1164 | S |
1165 | S |
1166 | D |
1167 | S |
1168 | D |
1169 | D |
1170 | D |
1171 | D |
1172 | S |
1173 | D |
1174 | S |
1175 | S |
1176 | S |
1177 | D |
1178 | D |
1179 | D |
1180 | D |
1181 | D |
1182 | D |
1183 | S |
1184 | D |
1185 | D |
1186 | D |
1187 | D |
1188 | S |
1189 | D |
1190 | D |
1191 | D |
1192 | D |
1193 | D |
1194 | D |
1195 | D |
1196 | S |
1197 | S |
1198 | D |
1199 | D |
1200 | D |
1201 | S |
1202 | D |
1203 | D |
1204 | D |
1205 | S |
1206 | S |
1207 | S |
1208 | D |
1209 | D |
1210 | D |
1211 | D |
1212 | D |
1213 | D |
1214 | D |
1215 | D |
1216 | S |
1217 | D |
1218 | S |
1219 | D |
1220 | D |
1221 | D |
1222 | S |
1223 | D |
1224 | D |
1225 | S |
1226 | D |
1227 | D |
1228 | D |
1229 | D |
1230 | D |
1231 | D |
1232 | D |
1233 | D |
1234 | D |
1235 | S |
1236 | D |
1237 | S |
1238 | D |
1239 | S |
1240 | D |
1241 | S |
1242 | S |
1243 | D |
1244 | D |
1245 | D |
1246 | S |
1247 | D |
1248 | S |
1249 | D |
1250 | D |
1251 | S |
1252 | D |
1253 | S |
1254 | S |
1255 | D |
1256 | S |
1257 | S |
1258 | D |
1259 | S |
1260 | S |
1261 | D |
1262 | D |
1263 | S |
1264 | D |
1265 | D |
1266 | S |
1267 | S |
1268 | S |
1269 | D |
1270 | D |
1271 | D |
1272 | D |
1273 | D |
1274 | S |
1275 | S |
1276 | D |
1277 | S |
1278 | D |
1279 | D |
1280 | D |
1281 | D |
1282 | D |
1283 | S |
1284 | D |
1285 | D |
1286 | D |
1287 | S |
1288 | D |
1289 | S |
1290 | D |
1291 | D |
1292 | S |
1293 | D |
1294 | S |
1295 | D |
1296 | D |
1297 | D |
1298 | D |
1299 | D |
1300 | S |
1301 | S |
1302 | S |
1303 | S |
1304 | S |
1305 | D |
1306 | S |
1307 | D |
1308 | D |
1309 | D |